Tetrahedron Letters No.37, pp. 2599-2601, 1964. Pergamon Press Ltd. Printed in Great Britain.

THE CONSTITUTION AND ABSOLUTE STEREOCHEMISTRY OF SWIETENINE

A.T. McPhail and G.A. Sim

Chemistry Department, The University, Glasgow W.2.

(Received 13 July 1964)

We have determined the crystal structure of the \underline{p} -iodobenzoate of destigloylswietenine and hence defined the molecular structure of swietenine, 1 $C_{32}H_{40}O_9$, a constituent of Swietenia macrophylla, as (I; R = tigloyl). The absolute stereochemistry shown was deduced by Bijvoet's anomalous-dispersion method. 2

The <u>p</u>-iodobenzoate³ crystallizes in the orthorhombic system, space group $P2_12_12_1$, with four molecules of $C_{34}B_{37}O_9I$ in a unit cell of dimensions $\underline{a}=17.44$, $\underline{b}=16.36$, $\underline{c}=11.20$ %. From equi-inclination Weissenberg photographs 1534 independent structure amplitudes were evaluated. The co-ordinates of the iodine atom were obtained from a Patterson synthesis and yielded a first set of structure factors for which the value of \underline{R} , the average discrepancy between observed and calculated structure amplitudes, was 37.4%.

In the first Fourier synthesis the 6-lactone, the adjoining ring C and ring A with some of its substituents were located initially. In our search for further molecular detail we were influenced

by the suspected biogenetic relationship of swietenine to the limonin 4 group of triterpencids, e.g. gedunin (II), 5 and were therefore troubled by the α -orientation of the 19-methyl group and by the position of the hydroxy ester and gem-dimethyl groups. We eventually realized that these features could be explained by cleavage of the 7-8 bond in a molecule of the gedunin type, followed by rotation of ring A about the 9-10 bond with addition of C(2) to C(30). Thereafter the location of the remaining atoms was straightforward and structure (I; $R = p - IC_6H_4CO)$ was deduced for the derivative. When the carbon and oxygen atoms (all weighted as carbon) were included with the iodine atom in the calculation of a second set of structure factors the value of R was 20.8%. After a round of Fourier refinement the light atoms were assigned their correct chemical types in the subsequent structure-factor calculation and the value of R was 18.2%. Further refinement is continuing.

The position of the double bond between C(8) and C(30) was established by the coplanar arrangement of carbon atoms 2, 30, 8, 9 and 14.

The chemistry of swietenine is discussed in the accompanying communication. $\boldsymbol{3}$

222 (1962).

REFERENCES

- S.S.G. Sircar and T. Chakrabarthy, J. Ind. Chem. Soc., 28, 207 (1951).
- 2. J.M. Bijvoet, A.F. Peerdeman and A.J. van Bommel, Nature, 169, 271 (1951)
- J.D. Connolly, R. Henderson, R. McCrindle, K.H. Overton and N.S. Bhacca, accompanying communication.
- S. Arnott, A.W. Davie, J.M. Robertson, G.A. Sim and D.G. Watson, J., 4183 (1961).
 D.H.R. Barton, S.K. Pradhan, S. Sternhell, and J.F. Templeton, J., 255 (1961).
- A. Akisanya, C.W.L. Bevan, J. Hirst, T.G. Halsall and D.A.H. Taylor, J., 3827 (1960).
 S.A. Sutherland, G.A. Sim and J.M. Robertson, Proc. Chem. Soc.